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- Perplexity
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Statistical MT

A true translation which is both Faithful and Fluent is 
often impossible.

A translation is said to be faithful if it conveys the full 
sense of the source sentence.

E.g. Il ragazzo è venuto qui ieri sera  >>
The boy came here yesterday   (NOT Faithful)
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The boy came here yesterday   (NOT Faithful)

A translation is said to be fluent if its construction 
Correctly follows the grammar of the target language.

E.g. Il ragazzo è venuto qui ieri sera  >>
The boy came yesterday evening here

(NOT Fluent)
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Statistical MT

A compromise is often tried for.

We want a model that maximizes a value Function.

SMT is about building a probabilistic model
To combine faithfulness and fluency:
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^  
Best translation T =  argmax faithful(T,S) * fluency (T)

T, S
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Consider that a source language sentence  S
may translate into any target  language
sentence   T.  

Some translations are just more likely than 

Statistical  MT
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Some translations are just more likely than 
others.  

How do we formalize  “more likely”?
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P(s) -- a priori probability.  The chance that s
happens.  

For example, If s = “May I know your name” 
Then P(s) is the chance that a certain person at a 
certain time will say “May I know your name” as 

Statistical  MT
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certain time will say “May I know your name” as 
opposed to saying something else.
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P(t | s) -- conditional probability.  The chance of t
given s.  

For example, 
Let s = May I know your name

and 

Statistical  MT
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and 
t = Mai je sais votre nom

then P(t | s) is the chance that upon seeing s, a 
translator will produce t.  
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P(s, t) -- joint probability.  The chance of s and t both 
happening.  If s and t don't influence each other, then 
we can write P(s, t) = P(s) * P(t). 

If s and t do influence each other, then we had better 
write P(s, t) = P(s) * P(t | s)  (using Bayes thm).

Statistical  MT
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That means: the chance that “s happens” times the 
chance that “if s happens, then t happens.” If s and t
are strings that are mutual translations, then there's 
definitely some influence.
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The question is how do we go about this?
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Given a Source Sentence s, we seek Target Sentence t
that maximizes P(t |s).  (“most likely” translation)
Sometimes we write: argmax  P(t|s)

t
Out of all sentences we seek the target  sentence t
which yields  the highest value for P(t | s). 

Statistical  MT
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which yields  the highest value for P(t | s). 

We can think of as follows:

t
s

P(t | s).

As if there is a program which can do it  by 
checking  sequentially on  all possible t
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= argmax  P(s | t) * P(t)                   

t

argmax  P(t | s)
t

Now,

Thus  Bayes’rule helps us to find the right s based 
on simpler probabilities.

This is known as Noisy-Channel Model,  where 
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This is known as Noisy-Channel Model,  where 
three  modelings  are  involved:

- Source model  to compute P(t)
- Channel model to compute P(s | t)
- Decoder to  produce t given s
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However, obviously things did not start with  such 
difficult approaches.

Things started with modeling using Words.

We shall start with WORD modeling 
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But before that we look at Word Alignment  as a basic 
step.

And Language Modeling
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Word Alignment

Word alignment is the NLP task of identifying 
translation relationships among the words (or more 
rarely multiword units) in a bi-lingual Text (bitext)

It can be shown in many ways:
- bipartite graph: between the two sides of the bitext, 
with an arc between two words if and only if they are 
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with an arc between two words if and only if they are 
translations of one another. 

-Matrix : where the (i, j)th cell is darkened if  ei

corresponds to fj s
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Word Alignment

John

Takes

J
o
h
n

ro
j

b
h
a
a
t

k
h
a
a
y
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Takes

Rice

everyday

However, it is not straightforward always.
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Word Alignment

Consider  
John does not take rice everyday>>

John roj roj bhaat khaay naa (B)

(Sometimes to repeat a word for emphasizing)

Consider the English word “does”. Which word it will 
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Consider the English word “does”. Which word it will 
be aligned to?

- Should we leave it unaligned?
- Should we align with “khaay”? 
- Should we align with  “naa”?
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Word Alignment

One solution is to look it both ways:
e >> b and b >> e

Then consider Union and Intersection.

- Paint the cells in the Intersection as Dark.
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- Paint the cells in the Intersection as Dark.
- Paint remaining cells in Union as Grey.
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Word Alignment

John

Does
J
o
h
n

ro
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b
h
a
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n
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Not

take

Rice

everyday

English 
to

Bengali

18



Word Alignment

John

Does

J
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h
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ro
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b
h
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Not

take

Rice

everyday

Bengali
to

English
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Word Alignment

John

Does

J
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Not

take

Rice

everyday

Final Word
Alignment
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Word Alignment

Many algorithms have been developed for
Word Alignment.

One can study :
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One can study :
Somers – Recency Vector Based
Fung and McKeown - - do -
Chatterjee & Agrawal: For more constraints
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Language Modeling
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Language Modeling



Introduction

Let us start with the equation:

argmax  P(t | s)
t

= argmax  P(s | t) * P(t)       
t

If we analyse the two terms of the RHS: 
- the first term talks about faithfulness
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- the first term talks about faithfulness
- the second term talks about fluency

Just word translation does not give a good translation.
We need to take care of features of the TL also.
Language modeling is developed with this objective.



Tells  how likely it is that a sequence of words will be  uttered/ 
written in the language.

We can think of modeling the target language

Helps in : fluency, word order  etc., which vary across languages

E.g.   <Noun> <Adj>it >> <Adj> <Noun>eng

Language Model

Formally, LM is a function that gives the probability of a given 
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Formally, LM is a function that gives the probability of a given 

sentence.  E.g. PEM(He is a good boy) > PEM(He is a boy good)

The obvious difficulty is:
- there are infinitely many sentences  in   
- any language.  

So how to obtain??



Language Model

We try to compute probabilities from language  corpus.

Computing probabilities of sentences are meaningless
Hence n-gram modeling is used.

For different values of n (e.g. 1, 2, 3, ..) the probability 
of the sequence of  n words w w .. w .
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of the sequence of  n words w1 w2 .. wn.

Using Bayes’ Theorem:
P(w1 w2 .. wn) = P(w1) P (w2 | w1 ) P(w3| w1 w2) …..

P(wn| w1 w2 .. wn-1)

The size on n depends on language, corpus etc.



Estimation

The question is how to estimate the probabilities

1. Unigram (w) = 

2. Bigram (w1 ,w2) = 
∑ wwcount

wwcount

),(

),( 21

WordsofnoTotal

wcount

.

)(
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2. Bigram (w1 ,w2) = 

3.  Trigram (w1 ,w2 ,w3 ) = 

∑
w

wwcount ),( 1

∑
w

wwwcount

wwwcount

),,(

),,(

21
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The bigger the corpus, the better the estimate!



Example

Consider 3 sentences:

<S>  I am John  </S>
<S>  John I am   </S>
<S>  I like river Don and friend John </S>

P(I | <S>) = 2/3                P (John | <S>) = 1/3
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P(I | <S>) = 2/3                P (John | <S>) = 1/3
P(am | I)   = 2/3                P (John | am)  =  1/2
P(</S> | John) = 2/3       P(Don | river)  = 1.0

Relative frequency:  sequence: prefix is calculated
In reality millions of words are used to estimate these
Probabilities.



N-grams

N-grams allow us to ascertain associations:
e.g.

salt and pepper (noise)

centre forward (soccer)
deep fine leg     (cricket)
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deep fine leg     (cricket)
yellow journalism
purple patch
European Parliament

A good model should have higher probabilities
For these phrases.



N-grams

N-gram probabilities helps in translation:

e.g. aami bhaat khai (BN) >> I eat rice
aami jal khai (BN) >> I drink water
aami churut khai (BN) >> I smoke cigar
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aami churut khai (BN) >> I smoke cigar
aami osudh khai(BN) >> I take medicine

N-grams allow us to choose the right 
translation.



N-grams

Very similar things can happen with other
Language  pairs  also:

The boy         >> Le garçon FR
>> Il ragazzo IT

The boys       >>  Les garçons
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The boys       >>  Les garçons FR
>>  I ragazzi IT

The girl         >> La fille FR
>>  La ragazza IT

The  girls       >> Les filles FR
>>  Le ragazze IT



Probability Calculations
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Probability Calculations



Calculation

Consider the example from Jurafsky and Martin
Based on 9332 sentences and 1446 words.
The table shows bigram counts

I Want To Eat Chinese food

I 5 827 0 9 0 0
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Want 2 0 608 1 6 6

To 2 0 4 686 2 0

Eat 0 0 2 0 16 2

Chinese 1 0 0 0 0 82

Food 15 0 15 0 1 4



Calculation

Consider the example from Jurafsky and Martin
Based on 9332 sentences and 1446 words

I Want To Eat Chinese food

I 0.002 0.33 0 0.0036 0 0

Want 0.0022 0 0.66 0.0011 0.0065 0.0065

To 0.0008 0 0.0017 0.28 0.00083 0

Further given
P(I | <S>) = 0.25
P(</S> | food) = 0.68
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Eat 0 0 0.0027 0 0.021 0.0027

Chinese 0.0063 0 0 0 0 0.52

Food 0.014 0 0.014 0 0.00092 0.0037

P(<S> I want to eat food </S>) can be calculated as:
0.25 * 0.33 *0.66 * 0.0027 * 0.68 = 0.000099



Data Used

Typically 3 data sets are used:

• Training data – used for training a model for

estimating statistical parameters.

• Held out data – an augmented training set, 
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• Held out data – an augmented training set, 
used for fine-tuning the model e.g. for smoothing. 

•Test data - the parameter values thus obtained
are used for estimating the probabilities



Smoothing
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Smoothing



Why Smoothing?
No training set can cover all possible English Word 
sequence.

What happens in test set we get an n-gram not seen in 
the training set?

The conditional probabilities will give 0.
- not useful from  practical point of view.
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- not useful from  practical point of view.

Also, how do we know the number of  times an n-gram is 
expected to be in the  test set.

What is the implication that an n-gram  occurs c times in 
the training set.



Smoothing techniques

- Empirical approach.

- Mathematical Approach
- Interpolation & Back off
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Count Smoothing / La Place Smoothing
• Simplest form of smoothing.

• For unigram:                           ,  N is the total no. of words

• For smoothing 1 is added to each count.

• After Laplace smoothing:

N

c
wp i

i =)(

VN

c
wp i

iLP
+

+
=

1
)(
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• Calculate for example: N = 100000, V = 10000, c = 500

• Small weights are given to unseen words. But it 
affects the probabilities of seen words hugely.  Hence

[

• Modified La Place (add α smoothing):  
where α < 1, is experimentally determined.

VN
iLP

+

VN

c
wp i

iLP
α

α
α

+

+
=)(



Count Smoothing / La Place Smoothing

For  bigram:      Let the count for a bigram (w v) = c

MLE for the its probability = , N  is the total no. of bigrams

If the size of vocabulary is V - possible bigrams is V2

• After Laplace smoothing:

N

c

1c+
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• After Laplace smoothing:

• Modified La Place

Look  how drastically the probabilities change!!

2
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Count Smoothing / La Place Smoothing

Results  from Europarl corpus:  Philip Koehn

Count 

c

Add 1 smoothing

(c+1) * n/ (n + V2)

Add αααα smoothing

(c+αααα ) * n/ (n + ααααV2)

Test Count

0 0.00378* 0.00016 0.00016

1 0.00755 0.95725 0.46235 V = 86700

αααα = 0.00017
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2 0.01133 1.91433 1.39946

5 0.02266 4.78558 4.35234

10 0.04155 9.57100 9.11927

20 0.07931 19.14183 18.95948

Note:  n > 29x106 size of corpus

V = 86700

*Too much 
Weight for
Unseen 
N-grams



Deleted Estimation

The question is how to interpret the obtained  
Statistics?

If an n-gram occurs k times in the training - what to 
expect.

Held out data is used to verify.
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Held out data is used to verify.

From Europarl held out that the actual counting was 
done. 

This was found to be comparable with the Add α

smoothing

When α was chosen as 0.00017



Deleted Estimation

Also from held out data expected numbers are calculated.

Training data :   bigrams with 0 count =  7515, 623,434

Held out data:  Count of these bigrams: 938, 504
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Held out data:  Count of these bigrams: 938, 504

Expected frequency:  0.00012.

Similar calculations were made for other frequencies.



Count Smoothing / La Place Smoothing

Results  from Europarl corpus:  Philip Koehn

Bi-gram

Counts

Count 

Add αααα

smoothing

Test 

Count

Actual count 

Training

Actual count

held out

Expected  

Count

0 0.00016 0.00016 7,515,623,434 938,504 0.00012

1 0.95725 0.46235 753,777 353,383 0.46900
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1 0.95725 0.46235 753,777 353,383 0.46900

2 1.91433 1.29946 170,913 239,736 1.40322

5 4.78558 4.35234 31,413 134,653 4.28820

10 9.57100 9.11927 9,106 85,666 9.41129

20 19.14183 18.95948 2,797 53,262 19.04992

Note: How closely the Add α count matches the expected count



Good-Turing  Smoothing

A mathematical approach.

It gives a formula for expected count based on actual
Counts – rather count of counts.

Let Nk be the number of n-grams that occur k times.
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The expected no. of times the n-gram will occur is:

Where k* is the expected number of times they will
occur in the test set.

k

k

N

N
kk

1
)1(

* +
+=



Good-Turing  Smoothing

Results  from Europarl corpus:  Philip Kohen

Count (k) Count of Counts (Nk) Test Count K*

0 7,514,941,065 0.00016 0.00015

1 1,132,844 0.46235 0.46539

2 263,611 1.39946 1.40679
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2 263,611 1.39946 1.40679

5 49,254 4.35234 4.36967

10 14,880 9.11927 9.31304

20 4,546 18.95948 19.54487

It fails for large k if Nk is 0.  
Curve fitting formulae are typically  used.



Interpolation
and
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and
Back-off



Interpolation and Back-off

Suppose we are using trigrams and trying to compute
the probability p(w3 | w1 w2).

There is no evidence of this trigram in the training data

The question is can we use simpler n-grams (bigrams)
For this purpose?
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For this purpose?

In a similar way can p(wn | wn-1) be estimated from 
p(wn)?

Two ways of doing:   Interpolation  and back-off.



Interpolation

A linear interpolation looks as follows:
p(wn | wn-2 wn-1) = λ1 p1(wn ) +

λ2 p2(wn| wn-1 ) +
λ3 p3(wn |wn-2wn-1 )

Note that:  Σ λi = 1, λi > 0  ∀i = 1,3
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Question:   How do we get the values of λi?

Typically the λi s are optimized on held out data.

In a variation of the above Conditional probabilities 
Are used based on the context.



Recursive  Interpolation

The idea  behind interpolation  is that :
use higher order n-grams if there is sufficient evidence
- else rely on lower order n-grams.

It has been found to be useful to make the interpolation 
Recursive:
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pn
R(wn | w1 …. wn-1) = λn pn (wn |w1 …. wn-1) +

(1 - λn ) pn-1
R (wn | w2 …. wn-1) 

Note: The λ s are not independent  of  the words. 
In fact we could write: λ w1 …. wn-1



Back Off
The idea  here  is that :

If we have seen an n-gram  Then 
estimate its probability from word prediction;

Else   
estimate it from lower order n-grams

dn pn (wn |w1 …. wn-1)
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dn pn (wn |w1 …. wn-1)

pn
BO(wn | w1 …. wn-1) = if count (w1 …. wn ) > 0  

αn pn-1
BO (wn | w2 …. wn-1)

otherwise

In both the cases it is done by grouping  n-grams  based
on their histories.



Diversity of Predicted Words

So far all the methods  treat words with same
Frequencies equally.

No importance is given to the diversity they have:

Eg.  Succeeding diversity:

Consider two words : spite and constant.
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Consider two words : spite and constant.
They both occur 993 times in Europarl.

(Koehn)
“spite”  is followed by 9 words – 979 are “of”
“constant”  is followed by 415  different words.

What does it say?



Diversity of Predicted Words

Very unlikely  - an unseen bigram starting with “spite”.  
But for “constant”  the  chance is very high.

In a similar way there is Preceding diversity (History)

Words  “York” and “foods” Both have  frequencies:  477.
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“York” is preceded by “New” 473 times.
“Foods” is preceded by variety of words. 

Recent Smoothing  algorithms take notice of these.



Witten-Bell Smoothing

Based on Recursive Interpolation.

It first counts No. of possible extensions of  w1, .., wn-1

D(w1, .., wn-1 , *) =  #(w | count (w1, .., wn-1 , w) > 0)

The  λ parameters are then calculated as follows:

D(w1, .., wn-1 , *)
1 - λ w …. w = ----------------------------------------------------
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1 n-1 
1 - λ w1 …. wn-1 = ----------------------------------------------------

D(w1, .., wn-1 , *) + Σw count (w1, .., wn-1 , w)

The effect can be seen as:

1 - λ spite =    9/ (9 + 993)  =  0.00898

1 - λ constant  =    415/ (415 + 993)  =  0.29474

Hence high back-off for constant, but not for spite



Kneser-Ney Smoothing

Here the diversity of History is considered:

Consider for illustration  the sentence:
I can’t see without the reading  ____________

We have to fill in the blank. 

If we go by unigram frequencies: the right word “glass”
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If we go by unigram frequencies: the right word “glass”
May not have the highest frequency. 

Suppose “Jersey” has a higher frequency than “glass”
But it is found that “Jersey” has the history of  “New”
Most of the time.

So  backing off to Unigram MLE Count,  does not help  



Kneser-Ney Smoothing

Hence a better heuristics is needed to estimate
The probability of a word in an unseen context.

KN smoothing adjusts the probability on the basis of : 
in how many different contexts a word has occurred.

A word that has occurred only in fewer contexts is less 
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A word that has occurred only in fewer contexts is less 
likely  to occur in a new context – in Comparison with 
a word that occurred in varied contexts.

# ( v |  count (v w) > 0) 
PContinuation(w) = --------------------------------

Σv # ( v |  count (v w) > 0) 



Kneser-Ney Smoothing

So even if  “Jersey” and “glass” have same frequencies 
If “Jersey”  has a history of  4 words (say) and “glass”
a history of  100 words (say) “glass” gets a much 
higher  Probability.

This is called KN-discounting.
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This along with Back-off model give KN smoothing.



Perplexity
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Perplexity

Language models may differ  on:
- data set size
- smoothing used
- up to which order n-grams were taken.

The question is how to measure the quality.
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- extrinsic tests may be too expensive.
- intrinsic evaluation is preferred

The idea is to give a metric.

Altough that does not guarantee good end result.



Perplexity

Perplexity  -most common evaluation function.
Dictionary meaning:    confusion; uncertainty

Intuition:
Of two probabilistic model which one gives better fit for 
the test data should be considered better –
hence will have less perplexity.
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hence will have less perplexity.

Hence perplexity is a function of the probabilities that is 
assigned by a model.

For a test set it is the probability of the test set Normalized 
by the number of words.



Perplexity

Let W = w1 w2 .. wN be a test set.

PP(W)  =  p(w1 w2 .. wN )
-1/N N

wwwp N

=
)...(

1

21

1Note:  <S> and
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N
wwwp ii

N

i

=
−

=

∏ )..|(

1

11

1

For bigram model we can use:
Note: Higher is the probability

lower is the perplexity.

N
wwp ii

N

i

)|(

1

1

1

−

=

∏

Note:  <S> and
</S> are 
Included  in the
Word sequence



Perplexity

We know that the Entropy Model allows us to model
Uncertainty.   

Hence it is natural to define Perplexity in terms of Entropy.

Is there any such relationship?

Entropy of a sequence.
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Entropy of a sequence.

If we consider an event to be  observing a long 

sequence of words w1 w2 .. wN , from a language L,
the associated entropy will be:   H(p(w1 w2 .. wN))   



Perplexity
The  associated   n-gram entropy entropy will be:

H(p(w1 w2 .. wn))   

The choice is over all the possible n-grams

∑
∈

−=

Nn WWww

nn wwpwwp
...),...(

11

11

),...(log),...(
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However, the value depends greatly on the value of n.
Since a shorter sequence is more likely than a longer
one, entropy rate – i.e. entropy per word is used, 
which is

∑
∈

−=

Nn WWww

nn wwpwwp
n ...),.(

11

11

),...(log),...(
1



Perplexity

The problem :  we are looking at Finite sequences.
For a true language model there is no fixed n

Hence ideally :  H(L)  = )...(
1

21 nwwwH
nn

Lim
∞→

)...(log)...(
1

121 nn wwpwwp
nn

Lim ∑
∞→

−=
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121 nn
nn
∑

∞→

Instead of summing over all possible infinite Length 
the computation can be simplified to:

)...(log
1

12 nwwp
nn

Lim
∞→

−



Perplexity

This ⇒ we can take a single sequence long enough.

Source:  Shannon-McMillan –Breiman Theorem

Although it is for Stationary & Ergodic Languages.
And Natural Language is NOT in this class.
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And Natural Language is NOT in this class.

It is assumed that shorter sequences will appear in
This long sequence according to their probabilities.

The above concept helps us  to compare models.



Perplexity

We use cross-entropy to compare two distributions.

Let the distributions be p and m.

p   - the actual entropy that generates the data
m  - the model that approximates that.

The cross entropy of m on p is defined by:
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The cross entropy of m on p is defined by:

H(p, m) )...(log)...(
1

121 nn wwmwwp
nn

Lim ∑
∞→

−=

)...(log
1

12 nwwm
nn

Lim
∞→

−≅

By Shannon et. Al.



Perplexity

Now:  for any model m    H(p) ≤ H(p,m)

Thus which ever approximation we take its cross-
entropy is always  bounded by below.

So two models can be compared easily.

H(W)  = )...(log
1

wwwm−
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H(W)  = )...(log
1

212 Nwwwm
N

−

Note that:     Perplexity (W) =  2 H(W)



Perplexity

Word Unigram 

(- log2p)

Bigram 

(- log2p)

I 6.684 3.197

Would 8.342 2.884

Like 9.129 2.026
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Like 9.129 2.026

to 5.081 0.402

work 9.993 4.816

Average 7.846 2.665

Perplexity 230.081 6.342



Managing the Size of the Model
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Managing the Size of the Model

A good language model  ⇔ Analysis of HUGE
volume of corpus.

- Many parallel corpus are available.
- Even Web crawling is possible.
- Gigaword corpus of several billion words are 
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- Gigaword corpus of several billion words are 
available  from LDC (www.ldc.upenn.edu/)

So getting data is  NOT a problem.
The problem is:     Management.



Managing the Size of the Model

Let us look at some numbers:

Consider Europarl Corpus 
No. of words ≈ 30x 106

No. of  unigrams = 86700 (singleton 38.6%)
No. of   bigrams ≈  2 x 106 (singleton 58.1%)
No. of   trigrams ≈  0.8 106 (singleton 74.4%)
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No. of   trigrams ≈  0.8 x 106 (singleton 74.4%)

As n increases the number of unique n-grams also 
increase.  Hence typically don’t go beyond trigrams.



Managing the Size of the Model

Efficient data Structures

-Typically a Trie structure is used to store n-grams.

- This helps in avoiding multiple storage of same  history.

E. G  storing  4-gram probabilities:
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The

best

very

difficult

beautiful

expensive

most

Case p = 0.0001

Task p = 0.0012

BACK-OFF probabilities are stored in penultimate level.



Managing the Size of the Model

Different other tricks :

- Indexing of words.   Even  with 2 bytes  more than     
65,000  words can be stored.   
(Huffman coding can also   be applied) 

- Probabilities are stored in log format – so that in 4 bytes 
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- Probabilities are stored in log format – so that in 4 bytes 
can be stored instead  of 8 bits.

- Reducing vocabulary size:   Numbers may be stored as   
NUM  Or   111.111 type format – so that each individual 
number    need Not be stored as tokens.

(NOTE – this does not change Language Modeling)



Managing the Size of the Model

Loading N-grams on Demand.

- The whole Model is not needed for a piece of text.
- The number of n-gram grows linearly with the length  
- Bag-of-words approach is used.
- Often phrase-Tables are consulted.
- Exclude all the n-grams that will not be needed.

Galileo Galilei PhD School  - Pisa               SMT - 2010
Niladri Chatterjee
IIT Delhi - INDIA

73

- Exclude all the n-grams that will not be needed.
(For EUROPARL it meant about  5% of all the 

5-grams;  at most 10% for long sentences)

Decoders use this language models  to produce the
Correct translation .



Thank You
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Thank You



Good-Turing  Smoothing 
Mathematical Derivation
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Mathematical Derivation



Good-Turing  Smoothing

Mathematical Derivation

Aim:  To estimate the no. of times an n-gram X will
Occur given that it occurred  r times in the training data
Having  the no. of n-grams to be N.

Suppose :   (i)   pr(X) = p       (ii)  independent occurrence

Then count of X i.e. c(X) ~ Bin (N, p)
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Then count of X i.e. c(X) ~ Bin (N, p)

i.e.  P(c(X) = r) =

⇒ E(c*(X))     =               

The problem is:      p is unknown

rN
p

r
p

r
C

N −
− )1(

∑
=

−
−

N

r

rN
p

r
p

r
C

N

0

)1(



Good-Turing  Smoothing

Mathematical Derivation

Let us consider another way:

Aim: To find E(Nr) – i.e. the number of n-grams to 
Have count = r.

Suppose:  No. of distinct n-grams is S: X1…. XS,
with probabilities p …. p .
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with probabilities p1 …. pS.

Hence EN (Nr) = 

(*)

The problem is:   all the pis are unknown

∑
=

=
S

i

i rXcP
1

))(( ∑
=

−
−=

S

i

ii

rNprp
r

CN

1
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Good-Turing  Smoothing

Mathematical Derivation

However, over a large corpus we can calculate Nr – as 
we have done earlier.

In the absence of any other knowledge this is our best 
value for  E(Nr) – i.e. E(Nr) ≅ Nr
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We use this value for the computation of 
E(c*(X) | c(X) = r)

Note: We do not know which of Xi s is X. Only thing 
we assume it occurred r times in the training data.



Good-Turing  Smoothing
Mathematical Derivation

Therefore the expectation needs to be taken over all 
the n-grams.

Hence E(c*(X) | c(X) = r) = ∑
=

==
S

i

ii rXcXXpNp
1

))(|(

Galileo Galilei PhD School  - Pisa               SMT - 2010
Niladri Chatterjee
IIT Delhi - INDIA

79

(1)

Now p( X = Xi | c(X) = r) = 
(2)

=i 1

∑
=

=

=
S

j
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i
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))((
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Good-Turing  Smoothing
Mathematical Derivation

Putting the value of  (1) in (2):

E(c*(X) | c(X) = r)  = EN(Nr)

= ∑
∑= =

=S

i
S

j

i
i

rXcp

rXcp
pN

1 ))((

))((
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=                                              (3)   

∑
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Now we simplify the numerator



Good-Turing  Smoothing
Mathematical Derivation
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E(c*(X) | c(X) = r) 

using (*)

Good-Turing  Smoothing
Mathematical Derivation

Putting this value in (3)

)(

)(
)1( 11

rN

rN

NE

NE
r +++≅
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Replacing with their respective MLEs

r

r
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N
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